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Hard and Soft-Core Equations of 
State for Simple Fluids 
V. Termination Temperatures for the Lennard-Jones 
m, n Potentialt 

JOHN STEPHENSON 
Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2 / 1  

(Rec,eiuetl Sepremher 25.1978) 

The six termination temperatures associated with the ten characteristic curves of a simple fluid 
are calculated for the Lennard-Jones rn. n potential second virial coefficient with I I  2 tn > 3. 
The extreme values in both the hard-core Sutherland potential limit t r  -. x ,  and in the opposite 
limit n --t m are obtained. The termination temperature ratios T,./T,. TF/& and TD/TA lie within 
a narrow finite range, with Ts/TA -+ 2 in the hard-core limit, independent of m. The high tem- 
perature form of the second virial coefficient is derived. and used to estimate thesoftening tem- 
perature i-', Also, some results for the square-well potential are presented. 

1 INTRODUCTION 

In this paper we discuss the Lennard-Jones m,n potential and its second 
virial coefficient, over the permitted range of values of the repulsive term 
exponent n, m 5 n I co. In the hard-core limit n -, 03 we obtain the Suther- 
land potential. From the second virial coefficient we shall calculate the six 
termination temperatures associated with the ten zeroth, first and second 
order characteristic curves of a simple fluid. Guided by our elementary 
theory of termination temperatures in the preceding paper IV,' we shall 
investigate the ratios of termination temperatures. We find that the ratios 
Tc/TB, TF/Tc and TD/TA are approximately equal for given attractive and 
repulsive potential exponents rn and n, and for a fixed value of m lie within a 
quite narrow range of values, while n varies from m to co. In the hard-core 
Sutherland potential limit, we observe that TD/TA -, 2, independent of the 
attractive exponent rn (> 3). The usual choice m = 6 corresponds to the 
Heitler-London dispersion energy. In the theory we keep m general (> 3), 

t Research supported in part by the National Research Council of Canada, Grant No, 
A6595. 
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38 J .  STEPHENSON 

but in most of the numerical work we set m = 6. Wealso show that the M - N 
model in IV with M = 1 can be derived as a limiting case of the Lennard- 
Jones second virial coefficient as m -P 3 for any value of n > 3. In the case 
of the m,2m potential, we quote the representation of the second virial 
coefficient B in terms of confluent hypergeometric functions. It is then 
straightforward to obtain the asymptotic forms of B. At extremely high 
temperatures B is small and positive, with the power law behaviour 

B - b(TJT)N, as T -+ 03 

where N is related to the repulsive exponent n by 

N = 3/n. 

This enables us for a given value of N to estimate the softening temperature 
T,  introduced in the T,  - N model in IV. At very low temperatures B is 
large and negative, and for the m,2m potential asymptotically 

B - ( -)b2N(nT*)1'2e1'" 

where T* = kTJ& is a scaled dimensionless temperature, E being the potential 
well-depth. 

Finally, we present some results for the square-well potential, which gives 
rise to a hard-core type second virial coefficient, exhibiting only three termina- 
tion temperatures, TB, Tc and TF. In a special limiting case the square-well 
potential can be forced to reproduce the van der Waals' second virial coeffi- 
cient. For a very wide well, 

TcJTB - TFJTC - 2. 

2 THE LENNARD-JONES m,n POTENTIAL 

The Lennard-Jones general m,n potential may be written 

and its second virial coefficient B is calculated from the classical integral 
formulae2 

B = bB* = (b /03)  jomd(r3)(l - e-*lkT 1, ( 2 4  

= ( -b/a3kT) j0mdrr'4'e"kT, (2b) 
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EQUATIONS OF STATE FOR FLUIDS V 39 

where 

2a 
b = - Lg3, 

3 (3) 

is four times the volume of the L (Avogadro number) molecules in a mole, and 
u is an effective molecular diameter, chosen so the potential (1) has a minimum 
of depth E at a radial distance B. The repulsive exponent n and the attractive 
exponent m are required to satisfy 

n > m > 3 ,  (4) 

so that the thermodynamic limit exists and the integrals appearing in B (2) 
converge at both limits of integration. Sometimes the effective molecular 
diameter length parameter is chosen to be the radial distance c0 at which the 
potential vanishes. Then the length scales differ by a factor 

and the scaled second virial coefficient B* is modified by the cube of this 
factor to Bg = ( B / B ~ ) ~ B * .  It is traditional to introduce "starred" dimension- 
less scaled variables 

r* = r/a, ( 6 4  

T* = kT/E, (6b) 

4* = (I)/&, (6c) 

which may be substituted into equations (2a) and (2b) as desired. In terms of 
these scaled variables one obtains a universal curve for the scaled virial 
coefficient B*, once m and n are fixed. Experimental second virial coefficients 
can then be fitted, after selecting m and n, by optimizing the values of E and 

In the limiting case n -+ 03, the Lennard-Jones potential (1) becomes the 
Sutherland hard-core potential with an infinite barrier at r = u and an 
attractive power law tail: 

This limit may be taken after calculation of the general second Virial coeffi- 
cient in the form of an inverse fractional power series. 

In the opposite limit n + m > 3 we still obtain a sensibly shaped potential 
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40 J. STEPHENSON 

which has a minimum of depth E at r = (T and vanishes at go = oe-"". 
In this limit one must analyze the integral form of the second virial coefficient 
directly, since the power series representation breaks down. 

For comparison purposes it is also of interest to examine the purely repul- 
sive inverse power potential obtained by discarding the attractive term in the 
Lennard-Jones potential, 

= 40/r)n. (9) 
The second virial coefficient integral now yields just a single inverse fractional 
power law term in the temperature, which matches with the high temperature 
behaviour of the general m,n Lennard-Jones potential second virial coeffi- 
cient, apart from an unimportant multiplicative factor, which is unity when 
n = 2m. 

3 TERMINATION TEMPERATURES FOR THE LENNARD-JONES 
m,n POTENTIAL 

Graphs of the scaled Lennard-Jones second virial coefficient B* versus 
scaled temperature T*, for m'= 6 and various values of n between 6 and a, 
are sketched in Figure 1. To obtain an expression for B* which is convenient 
for computation, first make an integration variable change to 

x = m/[ (n  - m)T*r*"] (10) 

in the formula (2a), then expand the attractive part of the exponential in an 
inverse fractional power series in T*, and perform the integrations term by 
term. Denoting the second virial coefficient by B:," to indicate the dependence 
on m and n, the result is 

where 

p = 1 - q = mfn. (12) 

The first s = 0 term in the series is positive and all the others are negative. At 
high temperatures the asymptotic form of B is determined by this leading 
positive term: 

where we have identified the high temperature exponent as N = 3/n. 
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FlGURE 1 Graphs of the scaled Lennard-Jones second virial coefficient B* = B/6 versus 
scaled temperature T' = kT/E for m = 6 and various values of n. The positions of the termination 
temperatures T,, T,. TF, TA and TD are indicated. 

FIGURE 2 Graphs of the scaled termination temperatures T* for the Lennard-Jones 6,n 
potential plotted on a logarithmic scale versus the exponent N E 3/n over the permitted range 
0 s N 1 f .  
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42 J .  STEPHENSON 

TABLE I 

Values of termination temperatures for the Lennard-Jones 6,n potential with 6 n I 03. 

T' = kT/E. 

n N = 3/n 

6 112 
7 311 
8 318 
9 113 

12 114 
15 115 
18 116 
21 1J7 
24 118 
27 119 
30 1/10 
36 1/12 
48 1/16 

c o o  
60 1/20 

TF 

8.489967 
6.421 51 1 
5.277899 
4.555335 
3.417928 
2.876595 
2.55808 1 
2.347121 
2.196433 
2.08301 0 
1.994295 
1.863942 
1.703997 
1.608440 
1.170915 

15.658565 
1 1.908453 
9.828917 
8.511745 
6.430798 
5.435575 
4.847830 
4.457401 
4.17784 1 
3.966988 
3.801783 
3.558533 
3.259132 
3.079703 
2.25 I248 

T: 

28.937101 
22.14208 1 
18.362805 
15.963015 
12.1 57373 
10.327955 
9.243280 
8.520447 
8.001503 
7.609227 
7.301 285 
6.846815 
6.285465 
5.947850 
4.372797 

44.50203 
36.01683 
31.49882 
28.79760 
25.15257 
24.07968 
23.95510 
24.27848 
24.84624 
25.56049 
26.36858 
28.1551 1 
32.06152 
36.14868 

03 

G 
82.77130 
67.54964 
59.46897 
54.66255 
48.28984 
46.56605 
46.55854 
47.36196 
48.60744 
50.1 1755 
51.79680 
55.46124 
63.38388 
71.62251 

03 

T: 

242.39 13 
2 12.8930 
200.4344 
195.9632 
203.1800 
223.8749 
25 1.1 108 
282.7095 
3 17.7596 
355.8072 
396.5977 
485.8364 
692.9604 
936.4791 

03 

At this point it is informative to insert a note on the purely repulsive 
inverse power potential (9). The second virial coefficient integral (2) yields 
exactly 

B; = r(i - N ) / T * ~ ,  (14) 

confirming that the repulsive part of the potential is responsible for the high 
temperature form of B. 

The six termination temperatures, TB, Tc, TF, TA, TD and TE are defined 
via equations (12a)-( 120 in IV. These relations are linear and homogeneous 
in B and its temperature derivatives. For any chosen values of rn and n, with 
n > m > 3, one may calculate the termination temperatures numerically 
from the series expansion form for B in (11). Values of T* for rn = 6 and 
various values of n in the range 6 I n I co are listed in Table I, and are 
plotted on a logarithmic scale versus N in Figure 2. Various ratios of termi- 
nation temperatures are listed in Table I1 for m = 6 and the same values of n 
as in Table 1. We observe from the entries in Table I1 that the same termina- 
tion temperature ratios which were exactly equal for the M - N model in IV 
are still approximately equal, at least in the case when rn = 6, for the Lennard- 
Jones second virial coefficient: 
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TABLE I1 

43 

Ratios of termination temperatures for the Lennard-Jones 6,11 potential with 6 n 5 Q). 

6 1.844 3.408 5.242 9.749 28.55 1.848 1.860 5.286 5.447 
7 1.854 3.448 5.609 10.519 33.15 1.859 1.876 5.672 5.911 
8 1.862 3.479 5.968 11.268 37.98 1.868 1.888 6.050 6.363 
9 1.869 3.504 6.322 1 2 . W  43.02 1.875 1.898 6.422 6.805 

12 1.881 3.557 7.359 14.128 59.45 1.890 1.920 7.509 8.078 
15 1.890 3.590 8.371 16.188 77.83 1.900 1.934 8.567 9.297 
18 1.895 3.613 9.364 18.201 98.16 1.907 1.944 9.604 10.483 
21 1.899 3.630 10.344 20.179 120.45 1.912 1.951 10.625 11.614 
24 1.902 3.643 11.312 22.130 144.67 1.915 1.956 11.635 12.789 
27 1.904 3.653 12.271 24.060 , 170.81 1.918 1.961 12.634 13.920 
30 1.906 3.661 13.222 25.972 198.87 1.920 1.964 13.624 15.041 
36 1.909 3.673 15.105 29.755 260.65 1.924 1.970 15.585 17.256 
48 1.913 3.689 18.815 37.197 406.67 1.929 1.977 19.448 21.613 
60 1.915 3.698 22.474 44.529 582.23 1.931 1.981 23.256 25.906 
co 1.923 3.735 Q) to Q) 1.942 2.000 03 03 

Moreover these ratios increase steadily as n increases from 6( =m) to co, or N 
decreases from to 0. As one approaches the hard-core limit n -+ 03, we note 
that T,, TB and TF remain finite, whereas TA, TD and TE diverge to + co, as 
expected. Again, the ratio TD/TA remain finite and approaches the value in 
the hard-core limit. For large n it is easy to show, from the two leading 
terms s = 0 and s = 1 in ( l l ) ,  which have opposite signs, that 

These asymptotic forms are indicated in Figure I in the case m = 6. So 

1 
3 

with the ratio (TD/TA) independent of m. The ratios denoted in (15b) by 
p(m,  n),  which were observed to be approximately equal when m = 6, 
become for large n 

TD - 2TA, and TE - - ( m  - 3)T: as n -+ co, (17) 

Allowing for the fact that in the hard-core limit TB and T, are not now exactly 
equal to 1 and 2 respectively, the first two ratios are asymptotically similar, 
and approximately equal to the third ratio T&/TA when m = 6, as may be 
checked in Table 11. More details of the hard-core limit are given in Section 4 
below. 
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44 J .  STEPHENSON 

4 TERMINATION TEMPERATURES FOR THE SUTHERLAND 
POTENTIAL 

In the limit n --f 00 the Lennard-Jones m,n potential becomes the Sutherland 
potential $m,a in (7), with a hard-core of diameter 0, and an attractive 
inverse power tail with exponent rn. The same limit n -+ 00 may be taken in 
the series expansion form ( 1  1) for B. Thence one obtains correctly the Suther- 
land potential second virial coefficient 

rn 

s = o  

= @(-3 /m,  1 - 3/m;  l/T*) (19b) 
where @ is a confluent hypergeometric function. The first s = 0 term in (19a) 
is positive, and all other terms are negative. The Sutherland potential second 
virial coefficient is now seen to be a monotonic increasing function of tem- 
perature, approaching the constant limiting value 1 as T* -+ 00. Conse- 
quently T,, Tc and TF exist and are finite, and their values and ratios for the 
case rn = 6 are included in Tables I and 11. We observe that the ratios 
TC-7'' and TF/Tc are approximately equal and both less than 2, as expected. 

For large values of m the tail of the Sutherland potential is cut off sharply. 
The second virial coefficient l3:. 

(20) 

for large rn is asymptotically 

- 1 - (3/m)e"", m -, co 
which is of the square-well form, section 9 below, but in a region where the 
square-well parameter 

R = (well width)/(molecular diameter) 

3fm - R 3  - 1. 

(21: 

approaches 1. In (20) we may identify 

(22: 

From section 9, we see that TB, Tc and TF now tend to zero like l/ln(m/3), and 
their ratios approach unity. 

In the opposite limit rn -, 3, the coefficient of the negative second term 
s = 1, diverges and 

Bz,m - 1 - [ (m/3  - 1)T* J - ' + finite terms involving negative 

powers of T*. (23 

Now the termination temperatures diverge to + 00 as rn -+ 3, but thei 
ratios Tc/TB and TF/Tc tend to 2 once more. The limit rn -+ 3 for a genera 
value of the repulsive exponent n is considered in section 6. 
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EQUATIONS OF STATE FOR FLUIDS V 45 

5 TERMINATION TEMPERATURES FOR THE LENNARD-JONES 
POTENTIAL AS n + m  > 3 

In this limiting case the Lennard-Jones m,n potential tends to the form (8), 
and provided m > 3 the integral formulae for the second virial coefficient are 
still valid. However, the transformation (10) now breaks down, and instead 
we change the integration variable from r* to 

(24) x = r * - m ,  

so (2a) becomes 
m 

I, (254 B:,m = (3/m) dxx-'-3/"[1 - eJ( ' - ' "x) /T '  

J o  

= (1/T*) lOrndx - 3/m In xex( 1 -In x ) / ~ * .  

By further setting y = x/T*, one may use (25b) to show 
peratures 

(25b) 

that at high tem- 

[To facilitate the evaluation of B:,,, ,  one splits the range of integration at 
x = e.4 In the portion 0 < x < e expand the exponential in (25a) as a 
power series in (l/T*), set t = 1 - In x, and integrate term by term. In the 
portion e < x < 00 integrate the Y 3 l m  term in (25a) and append the result 
to the series just obtained from the 0 to e integration; and in the exponential 
term set t = e/x to obtain 

An integration by parts can be employed to split this expression for BZvm into 
a strictly negative series and a strictly positive integral: 

The series converges well at high T*, but yields a negative contribution to 
B:,,, ,  which must be dominant at low T*. The integrand is well behaved at 
low T*, but yields a positive contribution to B:,,, ,  which must be dominant 
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46 J .  STEPHENSON 

at high T*.  An asymptotic estimate of the series using Stirling's formula 
sholks that at low temperatures 

BZ,,, - ( - 3 / m ) ( 2 ~ T * ) ' / * e ' ; ~ ,  T* -+ 0. (29) 

Now Bi,,, can be evaluated from (27) by numerical integration and sum- 
mation of the series. We restrict our attention to the case rn = 6. The integrand 
still has a nasty sharp maximum at a point t located by T = 2e(l - In r)/t, 
which is inside the range of integration 0 < t < 1 when T > 2e.l 

The values of B&, for m = 6 calculated from (27) are graphed in Figure 1. 
One can also obtain the temperature derivatives of B by differentiating under 
the integral sign in (27), and performing the necessary sums and integrals. 
Then the termination temperatures can be located numerically. For m = 6, 
the values of the six termination temperatures and their ratios are included 
in Tables I and 11, and appear as the end points of the graphs in Figure 2 at 
N=' 2. 

6 THE LIMITING CASE OF THE 3 - n POTENTIAL AND THE 
M - N MODEL 

As theRttractive exponent m --* 3 for a fixed value of the repulsive exponent n, 
one observes that the coefficient of the negative second term in (11) diverges, 
and 

+ finite terms involving negative powers of T* , (30) 

which reduces to (23) in the limit n -+ co. The source of the problem is that 
the attractive potential tail has become a sufficiently long-range inverse cube 
power to cause the integrals in (2) to diverge. The situation may be remedied 
by demanding that the attractive potential be very weak, by analogy with the 
weak long-range potentials used to derive van der Waals' equation.' In the 
present situation this means we just replace the divergent coefficient by a 
finite one and drop all the higher order negative terms in the series. B* now 
has the form 

I 

where a' and b' are positive constants, which is just the M - N model 
second virial coefficient in IV, with M = 1 and N = 3/n.  So this particular 
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EQUATIONS OF STATE FOR FLUIDS V 47 

case of the M - N model may be derived from a potential comprising a 
repulsive inverse power term with exponent n and a weak long-range inverse 
cube attractive term. 

7 THE PARTICULAR CASE OF THE m,2m POTENTIAL 

Certain simplifications in the mathematics occur when the repulsive exponent 
is exactly twice the attractive exponent m. This special case includes the 
popular Lennard-Jones 6,12 potential.* For general rn (>3)  we now have 
p = q = 4 in our previous formulae (1 1) for B*. One may identify the resulting 
series as a combination of confluent hypergeometric functions, with N = 3/n 
and n = 2m, 

Bm,2, = T*-"T(l - N ) @ ( - N ,  4; l/T*) 
(32) - 2 ~ r ( +  - N)T* - 1 / 2 0  (T 1 - N ,  3; 1/T*)l. 

The same results can be obtained directly from the integral form (2b). Note 
that if the molecular diameter no is used to scale the second virial coefficient, 
then B; = 22NB*. At low temperatures, where B is large and negative, one 
may derive the asymptotic formula 

B;, 2m - (- ) 2 ~ ( n ~ * ) " ~ e " ~ ' , ~ , ( ~  + N ,  I + N ;  T*). (33) 

8 ESTIMATES OF THE SOFTENING TEMPERATURE Ts 

One way of describing the high temperature form of the second virial 
coefficient is to introduce a characteristic temperature T,, so that as T + c13 

(34) 
with N = 3/n as before. Indeed the introduction of such a phenomenological 
softening temperature was a feature of the T,  - N model in IV. From the 
asymptotic high temperature form of the Lennard-Jones second virial 
coefficient (13) we find that 

B 3 bB* - b(T,IT)" 

T,* kTJ& = (p/q)[T(l - N)]'", (35) 
whence one may evaluate the softening tempeiature. An unavoidable defect 
is that the values of T,  depend on whether the length scaling by an effective 
molecular diameter is performed using Q at the potential minimum, or oo 
where the potential vanishes. Using oo scaling, one would have a softening 
temperature 

T;*, = (cr/o0)"TZ = (n/m)"/'"-m'T* I ¶  (36) 
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48 J.  STEPHENSON 

where the extra factor can be rather large. For the 6,12 and 6,18 Lennard- 
Joned potentials we have 

n = 12, T: = 2.255 .. ., Tf, = 9.020. .. , (374 

n = 18, T: = 1.034.. . , Tf' = 5.374.. . . (37b) 

If we use experimental values of E / &  obtained from the second virial coefficient 
of fluid argon, fitted by Lennard-Jones, 6,n potentials, we have6 

n = 12, E / &  = 112.4 K, T,  = 253.5 K, T,, = 1014 K, (38a) 

n = 18, E/& = 157.5 K, T,  = 162.9 K, To = 846 K. (38b) 

The critical temperature is 150.86 K. We conclude that although T,  may be a 
useful parameter in the structure of the theory, its numerical values are not 
of any great significance. 

9 THE SQUARE-WELL POTENTIAL 

For the square-well potential 

+ m , r  < u 

0, r > R a  
(39) 

where R is a dimensionless parameter, R > 1, as in (21). Substitution of this 
potential in the integral expression (2a) for the second virial coefficient yields 

B* = B/b = 1 - (R3 - l)(ec'kT - 1). (40) 
B* is a monotonic increasing function of temperature, approaching the limit 
1 as T* = &TIE 4 GO. Setting 

= 1 / ( ~ 3  - 1) (41) 

T ~ :  e l l T '  = y + L  (424 

(42b) 

TF: e''"(1 + 3/T* + I/T*') = y + 1. (424 

so 0 < y < GO, we find that the three termination temperatures which are 
finite, are given by 

T . e l / T *  
c.  (1 + 1/T*) = y + 1, 

Clearly TB < Tc < TF. In the limit of a very wide well R + 00, the termination 
temperatures diverge to + 00 like 

T i  - R3, TE - 2R3, TF - 4R3, (43) 
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TABLE I11 

Values and ratios of termination temperatures for the square-well potential for 
various values of the well-width parameter R.  

R R’ 7 Ta 7: Tf TcITB ?*IT, TFKC 

1.063 
1.101 
1.145 
1.260 
1.357 
1.442 
1.518 
1.587 
1.710 
1.817 
1.913 
2.000 

X 

1.200 
1.333 
1.500 
2.000 
2.500 
3.000 
3.500 
4.000 
5.000 
6.000 
7.000 
8.000 
I) 

5.000 
3.000 
2.000 
1 .000 
0.667 
0.500 
0.400 
0.333 
0.250 
0.200 
0.167 
0.143 
0. 000 

0.558 
0.721 
0.910 
1.443 
1.958 
2.466 
2.972 
3.476 
4.48 1 
5.485 
6.487 
7.489 

CO 

0.938 
1.252 
1.619 
2.668 
3.690 
4.702 
5.71 1 
6.716 
8.724 

10.729 
12.732 
14.735 
a2 

1.619 
2.224 
2.942 
5.013 
7.044 
9.061 

1 1.072 
13.080 
17.09 I 
2 1.097 
25.101 
29.105 

rn 

1.681 2.900 1.726 
1.735 3.083 1.777 
1.779 3.232 1.817 
1.849 3.474 1.879 
1.885 3.598 2.909 
1.907 3.674 1.927 
1.921 3.726 1.939 
1.932 3.763 1.947 
1.947 3.814 1.959 
1.956 3.846 1.966 
1.963 3.869 1.971 
1.968 3.886. 1.975 
2.000 4.000 2.000 

but their ratios remain finite with limiting value 

Tc/TB = TF/Tc = 2, as R + co. (44) 
As R -+ 1, and the attractive well shrinks in size, the termination tempera- 
tures tend to zero: 

1/G - In 7, (454 
l/Tc - In y - In In y, (45b) 
l/TF - In y - 2 In In y, ( 4 W  

and their ratios tend t o  unity. Numerical values of the termination tempera- 
tures and their ratios are listed in Table III for various values of the para- 
meter R .  One observes that the ratios Tc/TB and TF/Tc lie in the range 1 to 2, 
and are approximately equal. 

The van der Waals’ form of the second virial coefficient can be extracted as 
a limiting case of the square-well potential second virial coefficient. If the 
welldepth E -P 0 and the well-width ratio R --t co, in such a way that 
R3&/k -+ c, a constant, then 

B - b(1 - c/T). 

CONCLUDING REMARKS 

The main results of this paper concerning the Lennard-Jones, Sutherland 
and square-well potentials and their second virial coefficients are sum- 
marized in the Introduction. Questions involving the shape of the second 
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virial coefficient versus temperature graph, the order of the termination 
temperatures, and the nonexistence of a C, locus termination temperature 
for a general intermolecular potential will be the subjects of the following 
paper, VI. 
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